Fork me on GitHub

第4章 枚举类和扩展

4.1 Kotlin 枚举类

枚举类最基本的用法是实现一个类型安全的枚举。

枚举常量用逗号分隔,每个枚举常量都是一个对象。

1
2
3
enum class Color{
RED,BLACK,BLUE,GREEN,WHITE
}

枚举初始化

每一个枚举都是枚举类的实例,它们可以被初始化:

1
2
3
4
5
enum class Color(val rgb: Int) {
RED(0xFF0000),
GREEN(0x00FF00),
BLUE(0x0000FF)
}

默认名称为枚举字符名,值从0开始。若需要指定值,则可以使用其构造函数:

1
2
3
4
enum class Shape(value:Int){
ovel(100),
rectangle(200)
}

枚举还支持以声明自己的匿名类及相应的方法、以及覆盖基类的方法。如:

1
2
3
4
5
6
7
8
9
10
11
enum class ProtocolState {
WAITING {
override fun signal() = TALKING
},
TALKING {
override fun signal() = WAITING
};
abstract fun signal(): ProtocolState
}

如果枚举类定义任何成员,要使用分号将成员定义中的枚举常量定义分隔开

使用枚举常量

Kotlin 中的枚举类具有合成方法,允许遍历定义的枚举常量,并通过其名称获取枚举常数。

1
2
EnumClass.valueOf(value: String): EnumClass // 转换指定 name 为枚举值,若未匹配成功,会抛出IllegalArgumentException
EnumClass.values(): Array<EnumClass> // 以数组的形式,返回枚举值

获取枚举相关信息:

1
2
val name: String //获取枚举名称
val ordinal: Int //获取枚举值在所有枚举数组中定义的顺序

实例

1
2
3
4
5
6
7
8
9
10
11
12
13
enum class Color{
RED,BLACK,BLUE,GREEN,WHITE
}
fun main(args: Array<String>) {
var color:Color=Color.BLUE
println(Color.values())
println(Color.valueOf("RED"))
println(color.name)
println(color.ordinal)
}

自 Kotlin 1.1 起,可以使用 enumValues<T>()enumValueOf<T>() 函数以泛型的方式访问枚举类中的常量 :

1
2
3
4
5
6
7
8
9
10
11
enum class RGB { RED, GREEN, BLUE }
inline fun <reified T : Enum<T>> printAllValues() {
print(enumValues<T>().joinToString { it.name })
}
fun main(args: Array<String>) {
printAllValues<RGB>() // 输出 RED, GREEN, BLUE
}

4.2 Kotlin 扩展

Kotlin 可以对一个类的属性和方法进行扩展,且不需要继承或使用 Decorator 模式。

扩展是一种静态行为,对被扩展的类代码本身不会造成任何影响。

扩展函数

扩展函数可以在已有类中添加新的方法,不会对原类做修改,扩展函数定义形式:

1
2
3
fun receiverType.functionName(params){
body
}
  • receiverType:表示函数的接收者,也就是函数扩展的对象
  • functionName:扩展函数的名称
  • params:扩展函数的参数,可以为NULL

以下实例扩展 User 类 :

1
2
3
4
5
6
7
8
9
10
11
class User(var name:String)
/**扩展函数**/
fun User.Print(){
print("用户名 $name")
}
fun main(arg:Array<String>){
var user = User("Shijiacheng")
user.Print()
}

实例执行输出结果为:

1
用户名 Shijiacheng

下面代码为 MutableList 添加一个swap 函数:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
// 扩展函数 swap,调换不同位置的值
fun MutableList<Int>.swap(index1: Int, index2: Int) {
val tmp = this[index1] // this 对应该列表
this[index1] = this[index2]
this[index2] = tmp
}
fun main(args: Array<String>) {
val l = mutableListOf(1, 2, 3)
// 位置 0 和 2 的值做了互换
l.swap(0, 2) // 'swap()' 函数内的 'this' 将指向 'l' 的值
println(l.toString())
}

实例执行输出结果为:

1
[3, 2, 1]

this关键字指代接收者对象(receiver object)(也就是调用扩展函数时, 在点号之前指定的对象实例)。

扩展函数是静态解析的

扩展函数是静态解析的,并不是接收者类型的虚拟成员,在调用扩展函数时,具体被调用的的是哪一个函数,由调用函数的的对象表达式来决定的,而不是动态的类型决定的:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
open class C
class D: C()
fun C.foo() = "c" // 扩展函数 foo
fun D.foo() = "d" // 扩展函数 foo
fun printFoo(c: C) {
println(c.foo()) // 类型是 C 类
}
fun main(arg:Array<String>){
printFoo(D())
}

实例执行输出结果为:

1
c

若扩展函数和成员函数一致,则使用该函数时,会优先使用成员函数。

1
2
3
4
5
6
7
8
9
10
class C {
fun foo() { println("成员函数") }
}
fun C.foo() { println("扩展函数") }
fun main(arg:Array<String>){
var c = C()
c.foo()
}

实例执行输出结果为:

1
成员函数

扩展一个空对象

在扩展函数内, 可以通过 this 来判断接收者是否为 NULL,这样,即使接收者为 NULL,也可以调用扩展函数。例如:

1
2
3
4
5
6
7
8
9
10
fun Any?.toString(): String {
if (this == null) return "null"
// 空检测之后,“this”会自动转换为非空类型,所以下面的 toString()
// 解析为 Any 类的成员函数
return toString()
}
fun main(arg:Array<String>){
var t = null
println(t.toString())
}

实例执行输出结果为:

1
null

扩展属性

除了函数,Kotlin 也支持属性对属性进行扩展:

1
2
val <T> List<T>.lastIndex: Int
get() = size - 1

扩展属性允许定义在类或者kotlin文件中,不允许定义在函数中。初始化属性因为属性没有后端字段(backing field),所以不允许被初始化,只能由显式提供的 getter/setter 定义。

1
val Foo.bar = 1 // 错误:扩展属性不能有初始化器

扩展属性只能被声明为 val。

伴生对象的扩展

如果一个类定义有一个伴生对象 ,你也可以为伴生对象定义扩展函数和属性。

伴生对象通过”类名.”形式调用伴生对象,伴生对象声明的扩展函数,通过用类名限定符来调用:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
class MyClass {
companion object { } // 将被称为 "Companion"
}
fun MyClass.Companion.foo() {
println("伴随对象的扩展函数")
}
val MyClass.Companion.no: Int
get() = 10
fun main(args: Array<String>) {
println("no:${MyClass.no}")
MyClass.foo()
}

实例执行输出结果为:

1
2
no:10
伴随对象的扩展函数

扩展的作用域

通常扩展函数或属性定义在顶级包下:

1
2
3
package foo.bar
fun Baz.goo() { …… }

要使用所定义包之外的一个扩展, 通过import导入扩展的函数名进行使用:

1
2
3
4
5
6
7
8
9
package com.example.usage
import foo.bar.goo // 导入所有名为 goo 的扩展
// 或者
import foo.bar.* // 从 foo.bar 导入一切
fun usage(baz: Baz) {
baz.goo()
}

扩展声明为成员

在一个类内部你可以为另一个类声明扩展。

在这个扩展中,有个多个隐含的接受者,其中扩展方法定义所在类的实例称为分发接受者,而扩展方法的目标类型的实例称为扩展接受者。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
class D {
fun bar() { println("D bar") }
}
class C {
fun baz() { println("C baz") }
fun D.foo() {
bar() // 调用 D.bar
baz() // 调用 C.baz
}
fun caller(d: D) {
d.foo() // 调用扩展函数
}
}
fun main(args: Array<String>) {
val c: C = C()
val d: D = D()
c.caller(d)
}

实例执行输出结果为:

1
2
D bar
C baz

在 C 类内,创建了 D 类的扩展。此时,C 被成为分发接受者,而 D 为扩展接受者。从上例中,可以清楚的看到,在扩展函数中,可以调用派发接收者的成员函数。

假如在调用某一个函数,而该函数在分发接受者和扩展接受者均存在,则以扩展接收者优先,要引用分发接收者的成员你可以使用限定的 this 语法。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
class D {
fun bar() { println("D bar") }
}
class C {
fun bar() { println("C bar") } // 与 D 类 的 bar 同名
fun D.foo() {
bar() // 调用 D.bar(),扩展接收者优先
this@C.bar() // 调用 C.bar()
}
fun caller(d: D) {
d.foo() // 调用扩展函数
}
}
fun main(args: Array<String>) {
val c: C = C()
val d: D = D()
c.caller(d)
}

实例执行输出结果为:

1
2
D bar
C bar

以成员的形式定义的扩展函数, 可以声明为 open , 而且可以在子类中覆盖. 也就是说, 在这类扩展函数的派 发过程中, 针对分发接受者是虚拟的(virtual), 但针对扩展接受者仍然是静态的。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
open class D {
}
class D1 : D() {
}
open class C {
open fun D.foo() {
println("D.foo in C")
}
open fun D1.foo() {
println("D1.foo in C")
}
fun caller(d: D) {
d.foo() // 调用扩展函数
}
}
class C1 : C() {
override fun D.foo() {
println("D.foo in C1")
}
override fun D1.foo() {
println("D1.foo in C1")
}
}
fun main(args: Array<String>) {
C().caller(D()) // 输出 "D.foo in C"
C1().caller(D()) // 输出 "D.foo in C1" —— 分发接收者虚拟解析
C().caller(D1()) // 输出 "D.foo in C" —— 扩展接收者静态解析
}

实例执行输出结果为:

1
2
3
D.foo in C
D.foo in C1
D.foo in C
0%